QUASI-PERIODIC SOLUTIONS OF THE EQUATION vtt − vxx + v 3 = f(v)
نویسندگان
چکیده
We consider 1D completely resonant nonlinear wave equations of the type vtt − vxx = −v +O(v) with spatial periodic boundary conditions. We prove the existence of a new type of quasi-periodic small amplitude solutions with two frequencies, for more general nonlinearities. These solutions turn out to be, at the first order, the superposition of a traveling wave and a modulation of long period, depending only on time.
منابع مشابه
New conditional symmetries and exact solutions of nonlinear reaction-diffusion-convection equations. II
In the first part of this paper [1], a complete description of Q-conditional symmetries for two classes of reaction-diffusion-convection equations with power diffusivities is derived. It was shown that all the known results for reaction-diffusion equations with power diffusivities follow as particular cases from those obtained in [1] but not vise versa. In the second part the symmetries obtaine...
متن کاملNew conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کاملPositive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive ...
متن کاملKAM Tori for 1D Nonlinear Wave Equations with Periodic Boundary Conditions
with periodic boundary conditions are considered; V is a periodic smooth or analytic function and the nonlinearity f is an analytic function vanishing together with its derivative at u = 0. It is proved that for “most” potentials V (x), the above equation admits small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dim...
متن کاملComplex dynamics in a nerve fiber model with periodic coefficients
We deal with the periodic boundary value problem for a second-order nonlinear ODE which includes the case of the Nagumo type equation vxx−gv+n(x)F (v) = 0, previously considered by Grindrod and Sleeman and by Chen and Bell in the study of nerve fiber models. In some recent works we discussed the case of nonexistence of nontrivial solutions as well as the case in which many positive periodic sol...
متن کامل